Anyone that has lived in Boise for more than 10 or 20 years has probably noticed some changes – Summer days are more frequently topping 100 degrees, water levels at Lucky Peak are lower in late summer and the winter recreation season is starting later and later. Anyone that has lived in Boise for only 5-years has probably also noticed some changes, particularly in the severity and frequency of wildfires and their direct impact to the Treasure Valley’s air.

These changes are consistent with a warming trend that is occurring across the country and around the world. Increased levels of heat-trapping gasses released through a range of activities have amplified the natural green-house effect in earth’s atmosphere. The additional trapped heat causes the earth to warm and contributes to noticeable changes in climate.

In cooperation with the University of Idaho, Boise State University, the Climate Impact Research Consortium, Idaho EPSCoR (Experimental Program to Stimulate Competitive Research), The Consensus Building Institute and The Langdon Group, the City of Boise has launched the Boise Climate Adaptive Assessment (BCAA). The aim of BCAA is to better understand these changes and how to plan for them, and in-turn decrease our vulnerability and enhance our resiliency in the face of these risks.

BCAA will evolve and produce opportunities for Boiseans to get engaged in the conversation and be part of the process. Before we can begin combating these changes, we must first understand them by assessing the risks and quantifiably evaluating the impacts now and into the future.

Climate Risk Assessment

The Langdon Group and Dr. John Abatzoglou from the University of Idaho were tasked by the City to determine the most significant climate change related impacts that Boiseans will experience over the next 60 years. Based on scientifically credible climate information from climate models, the following impacts were examined:

1. Heat Stress Days: Days in which the heat index exceeds 91 degrees and its impact on heat-related illness.
2. Heavy Precipitation Days: Days with an excessive amount of rainfall that exceed the capacity of current stormwater and water renewal systems.
3. Irrigation Demands: The amount of water lost through evapotranspiration and its direct impact to irrigating our lawns, parks and gardens.
5. Poor Air Quality Days: Area wildfires’ impact to air quality in Boise.
7. Flooding Danger: The magnitude and timing of flooding events on the Boise River.

Esther Simplot Whitewater Park on a smokey day in 2016. Patrick Sweeney.

Questions? contact Kristine Barney, Strategic Initiatives Manager, Office of the Mayor: kbarney@cityofboise.org

Continues on the reverse
Climate Risk Assessment continued

The following breaks down each of these impacts in greater detail, however a more thorough description of the science that contributed to these findings can be found on the Boise City website at: BCAA URL.

Heat stress days: The frequency of Moderate Risk days (heat index greater than 91 degrees F) for heat extremes will increase from a historical baseline of around 16 days per summer to 66 days per summer by the mid-21st century. High Risk days (heat index greater than 103 degrees F) have been exceedingly rare in Boise; however, such days will become more common during the 21st century.

Heavy Precipitation Days: The occurrence of heavy precipitation events (daily total exceeding 0.7”) is projected to increase in Boise by approximately 50% by the early 21st century and nearly 100% by the mid-21st century.

Irrigation Demands: Climate change will increase evaporative demand and irrigation requirements during the warm season. An increase of approximately 2 inches of irrigation is projected by the early 21st century, and 4 inches of irrigation by the mid-21st century.

Drought Frequency: Moderate drought which currently occurs in around 1 of every 4 years, on average, is projected to occur in 1 of every 2 years, on average, by the mid-21st century. Drought frequency is projected to increase despite increases in heavy precipitation events due to increased evaporative demand with warming. Likewise, exceptional drought that historically occurs, on average, 1 out of every 12 years, is projected to occur in nearly 1 of every 3-4 years by the mid-21st century.

Poor Air Quality Days: The duration of the summer period under which forests and high desert landscapes are projected to be critically dry is projected to increase 40-100% and the odds of very large fires in the Boise airshed region is projected to increase by 400% by the mid-21st century. These changes suggest increased potential for chronic air quality problems within the metropolitan area.

Seasonal Stream Flows: Seasonal shifts in river levels for the Boise River are projected, resulting in more runoff in the winter and spring and less during the summer months.

Flooding Danger: No overall change in river flooding is projected. However, a greater proportion of high streamflow events are projected to occur during the fall through winter as a consequence of changes in snow and snowmelt timing on upstream watersheds and more winter precipitation falling as snow and directly running off. This is likely to result in a greater incidence of cool season floods along the Boise River.

Water Quality: The advancement in the timing of mountain snowmelt, increased evaporative demand, and extended period of warm and dry conditions during the summer months are projected to result in further declines in low flows in the Boise River. Conditions that are detrimental to water quality and aquatic life are expected to increase substantially, with a 400% increase the frequency of what are historically considered low flow levels by the mid-21st century.